Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(5)2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37239346

RESUMEN

Salmon aquaculture is constantly threatened by pathogens that impact fish health, welfare, and productivity, including the sea louse Caligus rogercresseyi. This marine ectoparasite is mainly controlled through delousing drug treatments that have lost efficacy. Therein, strategies such as salmon breeding selection represent a sustainable alternative to produce fish with resistance to sea lice. This study explored the whole-transcriptome changes in Atlantic salmon families with contrasting resistance phenotypes against lice infestation. In total, 121 Atlantic salmon families were challenged with 35 copepodites per fish and ranked after 14 infestation days. Skin and head kidney tissue from the top two lowest (R) and highest (S) infested families were sequenced by the Illumina platform. Genome-scale transcriptome analysis showed different expression profiles between the phenotypes. Significant differences in chromosome modulation between the R and S families were observed in skin tissue. Notably, the upregulation of genes associated with tissue repairs, such as collagen and myosin, was found in R families. Furthermore, skin tissue of resistant families showed the highest number of genes associated with molecular functions such as ion binding, transferase, and cytokine activity, compared with the susceptible. Interestingly, lncRNAs differentially modulated in the R/S families are located near genes associated with immune response, which are upregulated in the R family. Finally, SNPs variations were identified in both salmon families, where the resistant ones showed the highest number of SNPs variations. Remarkably, among the genes with SPNs, genes associated with the tissue repair process were identified. This study reported Atlantic salmon chromosome regions exclusively expressed in R or S Atlantic salmon families' phenotypes. Furthermore, due to the presence of SNPs and high expression of tissue repair genes in the resistant families, it is possible to suggest mucosal immune activation associated with the Atlantic salmon resistance to sea louse infestation.


Asunto(s)
Infestaciones por Piojos , Salmo salar , Animales , Transcriptoma/genética , Salmo salar/genética , Piel/parasitología , Fenotipo
2.
Genes (Basel) ; 14(4)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37107634

RESUMEN

The blue mussel Mytilus chilensis is an endemic and key socioeconomic species inhabiting the southern coast of Chile. This bivalve species supports a booming aquaculture industry, which entirely relies on artificially collected seeds from natural beds that are translocated to diverse physical-chemical ocean farming conditions. Furthermore, mussel production is threatened by a broad range of microorganisms, pollution, and environmental stressors that eventually impact its survival and growth. Herein, understanding the genomic basis of the local adaption is pivotal to developing sustainable shellfish aquaculture. We present a high-quality reference genome of M. chilensis, which is the first chromosome-level genome for a Mytilidae member in South America. The assembled genome size was 1.93 Gb, with a contig N50 of 134 Mb. Through Hi-C proximity ligation, 11,868 contigs were clustered, ordered, and assembled into 14 chromosomes in congruence with the karyological evidence. The M. chilensis genome comprises 34,530 genes and 4795 non-coding RNAs. A total of 57% of the genome contains repetitive sequences with predominancy of LTR-retrotransposons and unknown elements. Comparative genome analysis of M. chilensis and M. coruscus was conducted, revealing genic rearrangements distributed into the whole genome. Notably, transposable Steamer-like elements associated with horizontal transmissible cancer were explored in reference genomes, suggesting putative relationships at the chromosome level in Bivalvia. Genome expression analysis was also conducted, showing putative genomic differences between two ecologically different mussel populations. The evidence suggests that local genome adaptation and physiological plasticity can be analyzed to develop sustainable mussel production. The genome of M. chilensis provides pivotal molecular knowledge for the Mytilus complex.


Asunto(s)
Mytilus edulis , Mytilus , Animales , Mytilus/genética , Chile , Acuicultura , Cromosomas/genética
3.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362121

RESUMEN

Caligus rogercresseyi is the main ectoparasite that affects the salmon industry in Chile. The mechanisms used by the parasite to support its life strategy are of great interest for developing control strategies. Due to the critical role of insect peritrophins in host-parasite interactions and response to pest control drugs, this study aimed to identify and characterize the peritrophin-like genes present in C. rogercresseyi. Moreover, the expression of peritrophin-like genes was evaluated on parasites exposed to delousing drugs such as pyrethroids and azamethiphos. Peritrophin genes were identified by homology analysis among the sea louse transcriptome database and arthropods peritrophin-protein database obtained from GenBank and UniProt. Moreover, the gene loci in the parasite genome were located. Furthermore, peritrophin gene expression levels were evaluated by RNA-Seq analysis in sea louse developmental stages and sea lice exposed to delousing drugs deltamethrin, cypermethrin, and azamethiphos. Seven putative peritrophin-like genes were identified in C. rogercresseyi with high homology with other crustacean peritrophins. Differences in the presence of signal peptides, the number of chitin-binding domains, and the position of conserved cysteines were found. In addition, seven peritrophin-like gene sequences were identified in the C. rogercresseyi genome. Gene expression analysis revealed a stage-dependent expression profile. Notably, differential regulation of peritrophin genes in resistant and susceptible populations to delousing drugs was found. These data are the first report and characterization of peritrophin genes in the sea louse C. rogercresseyi, representing valuable knowledge to understand sea louse biology. Moreover, this study provides evidence for a deeper understanding of the molecular basis of C. rogercresseyi response to delousing drugs.


Asunto(s)
Copépodos , Enfermedades de los Peces , Phthiraptera , Animales , Copépodos/genética , Organotiofosfatos , Salmón , Enfermedades de los Peces/parasitología
4.
Mar Genomics ; 65: 100970, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35839704

RESUMEN

The giant mussel Choromytilus chorus is a marine bivalve commonly collected in central - southern Chile from fishery zones shared with the salmon industry. These economically relevant areas are also affected by the use of pesticides for controlling sea lice infestations in salmon aquaculture. Their main target is the sea louse Caligus rogercresseyi. However, other than some physiological impacts, the molecular effects of delousing drugs in non-target species such as C. chorus remain largely understudied. This study aimed to explore the transcriptome modulation of Trochophore and D larvae stages of C. chorus after exposure to azamethiphos and deltamethrin drugs. Herein, RNA-seq analyses and mRNA-lncRNAs molecular interactions were obtained. The most significant changes were found between different larval development stages exposed to delousing drugs. Notably, significant transcriptional variations were correlated with the drug concentrations tested. The biological processes involved in the development, such as cell movement and transcriptional activity, were mainly affected. Long non-coding RNAs (lncRNAs) were also identified in this species, and the transcription activity showed similar patterns with coding mRNAs. Most of the significantly expressed lncRNAs were associated with genes annotated to matrix metalloproteinases, collagenases, and transcription factors. This study suggests that exposure to azamethiphos or deltamethrin drugs can modulate the transcriptome signatures related to the early development of the giant mussel C. chorus.


Asunto(s)
Bivalvos , Copépodos , Enfermedades de los Peces , ARN Largo no Codificante , Salmo salar , Animales , Bivalvos/genética , Copépodos/genética , Perfilación de la Expresión Génica , Salmo salar/genética , Salmón/genética , Transcriptoma
6.
Sci Rep ; 12(1): 783, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039517

RESUMEN

The sea louse Caligus rogercresseyi has become one of the main constraints for the sustainable development of salmon aquaculture in Chile. Although this parasite's negative impacts are well recognized by the industry, some novel potential threats remain unnoticed. The recent sequencing of the C. rogercresseyi genome revealed a large bacterial community associated with the sea louse, however, it is unknown if these microorganisms should become a new focus of sanitary concern. Herein, chromosome proximity ligation (Hi-C) coupled with long-read sequencing were used for the genomic reconstruction of the C. rogercresseyi microbiota. Through deconvolution analysis, we were able to assemble and characterize 413 bacterial genome clusters, including six bacterial genomes with more than 80% of completeness. The most represented bacterial genome belonged to the fish pathogen Tenacibacullum ovolyticum (97.87% completeness), followed by Dokdonia sp. (96.71% completeness). This completeness allowed identifying 21 virulence factors (VF) within the T. ovolyticum genome and four antibiotic resistance genes (ARG). Notably, genomic pathway reconstruction analysis suggests putative metabolic complementation mechanisms between C. rogercresseyi and its associated microbiota. Taken together, our data highlight the relevance of Hi-C techniques to discover pathogenic bacteria, VF, and ARGs and also suggest novel host-microbiota mutualism in sea lice biology.


Asunto(s)
Copépodos/genética , Copépodos/microbiología , Infestaciones Ectoparasitarias/genética , Infestaciones Ectoparasitarias/parasitología , Enfermedades de los Peces/parasitología , Genómica/métodos , Interacciones Huésped-Parásitos , Microbiota/genética , Salmón/parasitología , Animales , Chile , Copépodos/patogenicidad , Genoma/genética , Tenacibaculum/patogenicidad
7.
Artículo en Inglés | MEDLINE | ID: mdl-35065314

RESUMEN

We assessed the adaptive contribution of the mitochondrial genes involved with the respiratory chain and oxidative phosphorylation of the blue mussel Mytilus chilensis, a native and heavily exploited species in the inner sea of Chiloé Island, southern Chile. The assembled mitochondrial transcriptome of individuals from two ecologically different farm-impacted natural seedbeds, Cochamó (41°S) and Yaldad (42°S), represented about 4.5% of the whole de novo transcriptome of the species and showed location and tissue (gills, mantle) specific expression differences in 13 protein-coding mitochondrial genes. The RNA-Seq analysis detected differences in the number of up-regulated mitogenes between individuals from Cochamó (7) and Yaldad (11), some being tissue-specific (ND4L and COX2). However, the analysis did not detect transcripts-per-million (TPM = 0) of ND2 and ND5 in gills and ATP6 in mantle samples from Cochamó. Likewise, for ND6 and ATP8 in any sample. Several monomorphic location-specific mitochondrial genetic variants were detected in samples from Cochamó (78) and Yaldad (207), representing standing genetic variability to optimize mitochondrial functioning under local habitats. Overall, these mitochondrial transcriptomic differences reflect the impact of environmental conditions on the mitochondrial genome functioning and offer new markers to assess the effects on mussel fitness of habitat translocations, a routine industry practice. Likewise, these mitochondrial markers should help monitor and maintain adaptive population differences in this keystone and heavily exploited native species.


Asunto(s)
Genoma Mitocondrial , Mytilus , Animales , Branquias , Humanos , Mytilus/genética , RNA-Seq , Transcriptoma
8.
Microorganisms ; 11(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36677368

RESUMEN

The host's physiological history and environment determine the microbiome structure. In that sense, the strategy used for the salmon transfer to seawater after parr-smolt transformation may influence the Atlantic salmon's intestinal microbiota. Therefore, this study aimed to explore the diversity and abundance of the Atlantic salmon intestinal microbiota and metagenome functional prediction during seawater transfer under three treatments. One group was exposed to gradual salinity change (GSC), the other to salinity shock (SS), and the third was fed with a functional diet (FD) before the seawater (SW) transfer. The microbial profile was assessed through full-16S rRNA gene sequencing using the Nanopore platform. In addition, metagenome functional prediction was performed using PICRUSt2. The results showed an influence of salinity changes on Atlantic salmon gut microbiota richness, diversity, and taxonomic composition. The findings reveal that GSC and the FD increased the Atlantic salmon smolt microbiota diversity, suggesting a positive association between the intestinal microbial community and fish health during seawater transfer. The reported knowledge can be applied to surveil the microbiome in smolt fish production, improving the performance of Atlantic salmon to seawater transfer.

9.
Noncoding RNA ; 7(4)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34940757

RESUMEN

The role of trypsin genes in pharmacological sensitivity has been described in numerous arthropod species, including the sea louse Caligus rogercresseyi. This ectoparasite species is mainly controlled by xenobiotic drugs in Atlantic salmon farming. However, the post-transcriptional regulation of trypsin genes and the molecular components involved in drug response remain unclear. In particular, the miRNA bantam family has previously been associated with drug response in arthropods and is also found in C. rogercresseyi, showing a high diversity of isomiRs. This study aimed to uncover molecular interactions among trypsin genes and bantam miRNAs in the sea louse C. rogercresseyi in response to delousing drugs. Herein, putative mRNA/miRNA sequences were identified and localized in the C. rogercresseyi genome through genome mapping and blast analyses. Expression analyses were obtained from the mRNA transcriptome and small-RNA libraries from groups with differential sensitivity to three drugs used as anti-sea lice agents: azamethiphos, deltamethrin, and cypermethrin. The validation was conducted by qPCR analyses and luciferase assay of selected bantam and trypsin genes identified from in silico transcript prediction. A total of 60 trypsin genes were identified in the C. rogercresseyi genome, and 39 bantam miRNAs were differentially expressed in response to drug exposure. Notably, expression analyses and correlation among values obtained from trypsin and bantam revealed an opposite trend and potential binding sites with significant ΔG values. The luciferase assay showed a reduction of around 50% in the expression levels of the trypsin 2-like gene, which could imply that this gene is a potential target for bantam. The role of trypsin genes and bantam miRNAs in the pharmacological sensitivity of sea lice and the use of miRNAs as potential markers in these parasites are discussed in this study.

10.
Mar Biotechnol (NY) ; 23(5): 710-723, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34564738

RESUMEN

The role of miRNAs in pharmacological responses through gene regulation related to drug metabolism and the detoxification system has recently been determined for terrestrial species. However, studies on marine ectoparasites have scarcely been conducted to investigate the molecular mechanisms of pesticide resistance. Herein, we explored the sea louse Caligus rogercresseyi miRNome responses exposed to delousing drugs and the interplaying with coding/non-coding RNAs. Drug sensitivity in sea lice was tested by in vitro bioassays for the pesticides azamethiphos, deltamethrin, and cypermethrin. Ectoparasites strains with contrasting susceptibility to these compounds were used. Small-RNA sequencing was conducted, identifying 2776 novel annotated miRNAs, where 163 mature miRNAs were differentially expressed in response to the drug testing. Notably, putative binding sites for miRNAs were found in the ADME genes associated with the drugs' absorption, distribution, metabolism, and excretion. Interactions between the miRNAs and long non-coding RNAs (lncRNAs) were also found, suggesting putative molecular gene regulation mechanisms. This study reports putative miRNAs correlated to the coding/non-coding RNAs modulation, revealing novel pharmacological mechanisms associated with drug resistance in sea lice species.


Asunto(s)
Antiparasitarios/farmacología , Copépodos/efectos de los fármacos , Resistencia a Medicamentos/genética , MicroARNs/metabolismo , Animales , Copépodos/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Enfermedades de los Peces/parasitología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Organotiofosfatos/farmacología , Piretrinas/farmacología , ARN Largo no Codificante/genética , Salmo salar/parasitología
11.
Fish Shellfish Immunol ; 117: 169-178, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34389379

RESUMEN

It is known that iron transporter proteins and their regulation can modulate the fish's immune system, suggesting these proteins as a potential candidate for fish vaccines. Previous studies have evidenced the effects of Atlantic salmon immunized with the chimeric iron-related protein named IPath® against bacterial and ectoparasitic infections. The present study aimed to explore the transcriptome modulation and the morphology of the sea louse Caligus rogercresseyi in response to Atlantic salmon injected with IPath®. Herein, Atlantic salmon were injected with IPath® and challenged to sea lice in controlled laboratory conditions. Then, female adults were collected after 25 days post-infection for molecular and morphological evaluation. Transcriptome analysis conducted in lice collected from immunized fish revealed high modulation of transcripts compared with the control groups. Notably, the low number of up/downregulated transcripts was mainly found in lice exposed to the IPath® fish group. Among the top-25 differentially expressed genes, Vitellogenin, Cytochrome oxidases, and proteases genes were strongly downregulated, suggesting that IPath® can alter lipid transport, hydrogen ion transmembrane transport, and proteolysis. The morphological analysis in lice collected from IPath® fish revealed abnormal embryogenesis and inflammatory processes of the genital segment. Furthermore, head kidney, spleen, and skin were also analyzed in immunized fish to evaluate the transcription expression of immune and iron homeostasis-related genes. The results showed downregulation of TLR22, MCHII, IL-1ß, ALAs, HO, BLVr, GSHPx, and Ferritin genes in head kidney and skin tissues; meanwhile, those genes did not show significant differences in spleen tissue. Overall, our findings suggest that IPath® can be used to enhance the fish immune response, showing a promissory commercial application against lice infections.


Asunto(s)
Copépodos/genética , Infestaciones Ectoparasitarias/prevención & control , Enfermedades de los Peces/prevención & control , Proteínas Recombinantes/administración & dosificación , Salmo salar/parasitología , Transcriptoma , Vacunas/administración & dosificación , Animales , Infestaciones Ectoparasitarias/veterinaria , Femenino , Ferritinas/genética , Salmo salar/inmunología , Transferrina/genética , Vacunación
12.
Front Genet ; 12: 666539, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093658

RESUMEN

The study of adaptive population differences is relevant for evolutionary biology, as it evidences the power of selective local forces relative to gene flow in maintaining adaptive phenotypes and their underlying genetic determinants. However, human-mediated hybridization through habitat translocations, a common and recurrent aquaculture practice where hybrids could eventually replace local genotypes, risk populations' ability to cope with perturbations. The endemic marine mussel Mytilus chilensis supports a booming farming industry in the inner sea of Chiloé Island, southern Chile, which entirely relies on artificially collected seeds from natural beds that are translocated to ecologically different fattening centers. A matter of concern is how farm-impacted seedbeds will potentially cope with environmental shifts and anthropogenic perturbations. This study provides the first de novo transcriptome of M. chilensis; assembled from tissue samples of mantles and gills of individuals collected in ecologically different farm-impacted seedbeds, Cochamó (41°S) and Yaldad (43°S). Both locations and tissue samples differentially expressed transcripts (DETs) in candidate adaptive genes controlling multiple fitness traits, involved with metabolism, genetic and environmental information processing, and cellular processes. From 189,743 consensus contigs assembled: 1,716 (Bonferroni p value ≤ 0.05) were DETs detected in different tissues of samples from different locations, 210 of them (fold change ≥ | 100|) in the same tissue of samples from a different location, and 665 (fold change ≥ | 4|) regardless of the tissue in samples from a different location. Site-specific DETs in Cochamó (169) and Yaldad (150) in candidate genes controlling tolerance to temperature and salinity shifts, and biomineralization exhibit a high number of nucleotide genetic variants with regular occurrence (frequency > 99%). This novel M. chilensis transcriptome should help assessing and monitoring the impact of translocations in wild and farm-impacted mussel beds in Chiloé Island. At the same time, it would help designing effective managing practices for conservation, and translocation traceability.

13.
Sci Data ; 8(1): 60, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574331

RESUMEN

Caligus rogercresseyi, commonly known as sea louse, is an ectoparasite copepod that impacts the salmon aquaculture in Chile, causing losses of hundreds of million dollars per year. In this study, we report a chromosome-scale assembly of the sea louse (C. rogercresseyi) genome based on single-molecule real-time sequencing (SMRT) and proximity ligation (Hi-C) analysis. Coding RNAs and non-coding RNAs, and specifically long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were identified through whole transcriptome sequencing from different life stages. A total of 23,686 protein-coding genes and 12,558 non-coding RNAs were annotated. In addition, 6,308 lncRNAs and 5,774 miRNAs were found to be transcriptionally active from larvae to adult stages. Taken together, this genomic resource for C. rogercresseyi represents a valuable tool to develop sustainable control strategies in the salmon aquaculture industry.


Asunto(s)
Copépodos/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Transcriptoma , Animales , Cromosomas , Copépodos/patogenicidad , Enfermedades de los Peces/parasitología , Estadios del Ciclo de Vida/genética , Salmón/parasitología
14.
Biology (Basel) ; 11(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35052999

RESUMEN

The growing amount of genome information and transcriptomes data available allows for a better understanding of biological processes. However, analysis of complex transcriptomic experimental designs involving different conditions, tissues, or times is relevant. This study proposes a novel approach to analyze complex data sets combining transcriptomes and miRNAs at the chromosome-level genome. Atlantic salmon smolts were transferred to seawater under two strategies: (i) fish group exposed to gradual salinity changes (GSC) and (ii) fish group exposed to a salinity shock (SS). Gills, intestine, and head kidney samples were used for total RNA extraction, followed by mRNA and small RNA illumina sequencing. Different expression patterns among the tissues and treatments were observed through a whole-genome transcriptomic approach. Chromosome regions highly expressed between experimental conditions included a great abundance of transposable elements. In addition, differential expression analysis showed a greater number of transcripts modulated in response to SS in gills and head kidney. miRNA expression analysis suggested a small number of miRNAs involved in the smoltification process. However, target analysis of these miRNAs showed a regulatory role in growth, stress response, and immunity. This study is the first to evidence the interplaying among mRNAs and miRNAs and the structural relationship at the genome level during Atlantic salmon smoltification.

15.
Sci Total Environ ; 764: 142867, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33071116

RESUMEN

Wastewater-Based Epidemiology is a tool to face and mitigate COVID-19 outbreaks by evaluating conditions in a specific community. This study aimed to analyze the microbiome profiles using nanopore technology for full-length 16S rRNA sequencing in wastewater samples collected from a penitentiary (P), a residential care home (RCH), and a quarantine or health care facilities (HCF). During the study, the wastewater samples from the RCH and the P were negative for SARS-CoV-2 based on qPCRs, except during the fourth week when was detected. Unexpectedly, the wastewater microbiome from RCH and P prior to week four was correlated with the samples collected from the HCF, suggesting a core bacterial community is expelled from the digest tract of individuals infected with SARS-CoV-2. The microbiota of wastewater sample positives for SARS-CoV-2 was strongly associated with enteric bacteria previously reported in patients with risk factors for COVID-19. We provide novel evidence that the wastewater microbiome associated with gastrointestinal manifestations appears to precede the SARS-CoV-2 detection in sewage. This finding suggests that the wastewaters microbiome can be applied as an indicator of community-wide SARS-CoV-2 surveillance.


Asunto(s)
COVID-19 , Microbiota , Humanos , ARN Ribosómico 16S/genética , SARS-CoV-2 , Aguas Residuales
16.
Genes (Basel) ; 11(8)2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32726954

RESUMEN

Caligus rogercresseyi, commonly known as sea louse, is an ectoparasite copepod that impacts the salmon aquaculture in Chile, causing losses of hundreds of million dollars per year. This pathogen is mainly controlled by immersion baths with delousing drugs, which can lead to resistant traits selection in lice populations. Bioassays are commonly used to assess louse drug sensitivity, but the current procedures may mask relevant molecular responses. This study aimed to discover novel coding genes and non-coding RNAs that could evidence drug sensitivity at the genomic level. Sea lice samples from populations with contrasting sensitivity to delousing drugs were collected. Bioassays using azamethiphos, cypermethrin, and deltamethrin drugs were conducted to evaluate the sensitivity and to collect samples for RNA-sequencing. Transcriptome sequencing was conducted on samples exposed to each drug to evaluate the presence of coding and non-coding RNAs associated with the response of these compounds. The results revealed specific transcriptome patterns in lice exposed to azamethiphos, deltamethrin, and cypermethrin drugs. Enrichment analyses of Gene Ontology terms showed specific biological processes and molecular functions associated with each delousing drug analyzed. Furthermore, novel long non-coding RNAs (lncRNAs) were identified in C. rogercresseyi and tightly linked to differentially expressed coding genes. A significant correlation between gene transcription patterns and phenotypic effects was found in lice collected from different salmon farms with contrasting drug treatment efficacies. The significant correlation among gene transcription patterns with the historical background of drug sensitivity suggests novel molecular mechanisms of pharmacological resistance in lice populations.


Asunto(s)
Antiparasitarios/farmacología , Copépodos/efectos de los fármacos , Copépodos/genética , Enfermedades de los Peces/parasitología , ARN Largo no Codificante/genética , ARN Mensajero/genética , Salmón/parasitología , Animales , Chile , Resistencia a Medicamentos/genética , Interacciones Huésped-Parásitos , Transcriptoma
17.
Sci Rep ; 10(1): 2895, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32076035

RESUMEN

Caligus rogercresseyi is a copepod ectoparasite with a high prevalence in salmon farms in Chile, causing severe welfare and economic concerns to the sector. Information on the parasite's underpinning mechanisms to support its life strategy is recently being investigated. Due to the critical role of microbiota, this study aimed to characterize the microbiota community associated with C. rogercresseyi from different regions with salmon aquaculture in Chile. Using third-generation sequencing with Nanopore technology (MinION) the full 16S rRNA gene from sea lice obtained from 8 areas distributed over the three main aquaculture regions were sequenced. Microbiota of the parasite is mainly comprised of members of phyla Proteobacteria and Bacteroidetes, and a core microbiota community with 147 taxonomical features was identified, and it was present in sea lice from the three regions. This community accounted for 19% of total identified taxa but more than 70% of the total taxonomical abundance, indicating a strong presence in the parasite. Several taxa with bioactive compound secretory capacity were identified, such as members of genus Pseudoalteromonas and Dokdonia, suggesting a possible role of the lice microbiota during the host infestation processes. Furthermore, the microbiota community was differentially associated with the salmon production, where several potential pathogens such as Vibrio, Tenacibaculum, and Aeromonas in Los Lagos, Aysén, and Magallanes region were identified. Notably, the Chilean salmon industry was initially established in the Los Lagos region but it's currently moving to the south, where different oceanographic conditions coexist with lice populations. The results originated by this study will serve as foundation to investigate putative role of sea lice as vectors for fish pathogens and also as reservoirs for antibiotic-resistant genes.


Asunto(s)
Copépodos/microbiología , Reservorios de Enfermedades/microbiología , Peces/microbiología , Peces/parasitología , Microbiota/genética , Secuenciación de Nanoporos , Animales , Biodiversidad , Chile , Análisis por Conglomerados , Geografía , Filogenia
18.
Fish Shellfish Immunol ; 90: 199-209, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31048036

RESUMEN

The study of host-parasite relationships is an integral part of the immunology of aquatic species, where the complexity of both organisms has to be overlayed with the lifecycle stages of the parasite and immunological status of the host. A deep understanding of how the parasite survives in its host and how they display molecular mechanisms to face the immune system can be applied for novel parasite control strategies. This review highlights current knowledge about salmon and sea louse, two key aquatic animals for aquaculture research worldwide. With the aim to catch the complexity of the salmon-louse interactions, molecular information gleaned through genomic studies are presented. The host recognition system and the chemosensory receptors found in sea lice reveal complex molecular components, that in turn, can be disrupted through specific molecules such as non-coding RNAs.


Asunto(s)
Copépodos/fisiología , Infestaciones Ectoparasitarias/veterinaria , Enfermedades de los Peces/parasitología , Interacciones Huésped-Parásitos , Salmón , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Acuicultura , Quimiotaxis/inmunología , Copépodos/genética , Copépodos/inmunología , Copépodos/microbiología , Infestaciones Ectoparasitarias/parasitología , Infestaciones Ectoparasitarias/fisiopatología , Enfermedades de los Peces/fisiopatología , Inmunidad Innata/fisiología , Microbiota/fisiología , Salmón/inmunología , Salmón/microbiología , Salmón/fisiología
19.
Gene ; 697: 35-39, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30794911

RESUMEN

Chemoreception is critical for marine ectoparasites - such as salmon lice (Lepeophtheirus salmonis) - to identify and locate salmonid hosts. The molecular receptors that parasites employ to detect host-specific chemical stimuli from hosts (kairomones) have not been well characterised. In the present study, transcription of the sea louse Ionotropic receptor 25a (IR25a) was blocked to evaluate whether it functions as a chemical-perception related gene for a specific chemical cue from the Atlantic salmon host. Double-strand RNA interference (dsRNA) oligonucleotides were applied to salmon lice by in vitro transcription and then exposing salmon lice nauplii to dsRNA by soaking overnight. Silencing of the IR25a gene was confirmed by qPCR in experimental groups of knock-down copepodids (dsIR25a). Behavioural responses associated with host recognition were evaluated in dsIR25a sea lice after exposure to a peptide produced by the salmon host (Cath-2). The dsIR25a group decreased expression levels of IR25a by >7-fold with respect to the control group. This group was also 26% slower than the control group (control swimming speed was 69 mm/s, while the treated group was 51 mm/s). Since the swimming activity of salmon lice copepodids is associated with the activation of the chemosensory system, these results indicate that the L. salmonis chemosensory perception system was not fully activated due to gene silencing. The results of this study demonstrate the role of ionotropic receptor 25a during host recognition by sea lice.


Asunto(s)
Copépodos/genética , Receptores Ionotrópicos de Glutamato/genética , Animales , Células Quimiorreceptoras/fisiología , Copépodos/metabolismo , Enfermedades de los Peces/parasitología , Silenciador del Gen , ARN Bicatenario/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Receptores Ionotrópicos de Glutamato/metabolismo , Salmo salar/parasitología
20.
Mar Genomics ; 45: 38-47, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30772247

RESUMEN

The salmon louse Lepeophtheirus salmonis is a marine ectoparasite that has a detrimental impact on salmon farms. Genomic knowledge of adult stages is critical to understand the reproductive success and lifecycle completion of this species. Here, we report a comprehensive characterization of the L. salmonis miRNome with emphasis on the sex-differences of the parasite. Small-RNA sequencing was conducted on males and females, and mRNA-sequencing was also conducted to identify miRNA-targets at these stages. Based on bioinformatics analyses, 3101 putative miRNAs were found in L. salmonis, including precursors and variants. The most abundant and over-expressed miRNAs belonged to the bantam, mir-100, mir-1, mir-263a and mir-276 families, while the most differentially expressed mRNAs corresponded to genes related to reproduction and other biological processes involved in cell-differentiation. Target analyses revealed that the most up-regulated miRNAs in males can act by inhibiting the expression of genes related to female differentiation such as vitellogenin genes. Target prediction and expression patterns suggested a pivotal role of miRNAs in the reproductive development of L. salmonis.


Asunto(s)
Copépodos/genética , MicroARNs/genética , ARN no Traducido/metabolismo , Transcripción Genética , Animales , Copépodos/metabolismo , Femenino , Masculino , MicroARNs/metabolismo , Reproducción/genética , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA